52 research outputs found

    Delta-Complete Decision Procedures for Satisfiability over the Reals

    Full text link
    We introduce the notion of "\delta-complete decision procedures" for solving SMT problems over the real numbers, with the aim of handling a wide range of nonlinear functions including transcendental functions and solutions of Lipschitz-continuous ODEs. Given an SMT problem \varphi and a positive rational number \delta, a \delta-complete decision procedure determines either that \varphi is unsatisfiable, or that the "\delta-weakening" of \varphi is satisfiable. Here, the \delta-weakening of \varphi is a variant of \varphi that allows \delta-bounded numerical perturbations on \varphi. We prove the existence of \delta-complete decision procedures for bounded SMT over reals with functions mentioned above. For functions in Type 2 complexity class C, under mild assumptions, the bounded \delta-SMT problem is in NP^C. \delta-Complete decision procedures can exploit scalable numerical methods for handling nonlinearity, and we propose to use this notion as an ideal requirement for numerically-driven decision procedures. As a concrete example, we formally analyze the DPLL framework, which integrates Interval Constraint Propagation (ICP) in DPLL(T), and establish necessary and sufficient conditions for its \delta-completeness. We discuss practical applications of \delta-complete decision procedures for correctness-critical applications including formal verification and theorem proving.Comment: A shorter version appears in IJCAR 201

    Proof Generation from Delta-Decisions

    Full text link
    We show how to generate and validate logical proofs of unsatisfiability from delta-complete decision procedures that rely on error-prone numerical algorithms. Solving this problem is important for ensuring correctness of the decision procedures. At the same time, it is a new approach for automated theorem proving over real numbers. We design a first-order calculus, and transform the computational steps of constraint solving into logic proofs, which are then validated using proof-checking algorithms. As an application, we demonstrate how proofs generated from our solver can establish many nonlinear lemmas in the the formal proof of the Kepler Conjecture.Comment: Appeared in SYNASC'1

    Revisiting the Complexity of Stability of Continuous and Hybrid Systems

    Full text link
    We develop a framework to give upper bounds on the "practical" computational complexity of stability problems for a wide range of nonlinear continuous and hybrid systems. To do so, we describe stability properties of dynamical systems using first-order formulas over the real numbers, and reduce stability problems to the delta-decision problems of these formulas. The framework allows us to obtain a precise characterization of the complexity of different notions of stability for nonlinear continuous and hybrid systems. We prove that bounded versions of the stability problems are generally decidable, and give upper bounds on their complexity. The unbounded versions are generally undecidable, for which we give upper bounds on their degrees of unsolvability

    Satisfiability Modulo ODEs

    Full text link
    We study SMT problems over the reals containing ordinary differential equations. They are important for formal verification of realistic hybrid systems and embedded software. We develop delta-complete algorithms for SMT formulas that are purely existentially quantified, as well as exists-forall formulas whose universal quantification is restricted to the time variables. We demonstrate scalability of the algorithms, as implemented in our open-source solver dReal, on SMT benchmarks with several hundred nonlinear ODEs and variables.Comment: Published in FMCAD 201

    Quantifier Elimination over Finite Fields Using Gr\"obner Bases

    Full text link
    We give an algebraic quantifier elimination algorithm for the first-order theory over any given finite field using Gr\"obner basis methods. The algorithm relies on the strong Nullstellensatz and properties of elimination ideals over finite fields. We analyze the theoretical complexity of the algorithm and show its application in the formal analysis of a biological controller model.Comment: A shorter version is to appear in International Conference on Algebraic Informatics 201

    Neural Lyapunov Control

    Full text link
    We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging control problems.Comment: NeurIPS 201

    Monte Carlo Tree Descent for Black-Box Optimization

    Full text link
    The key to Black-Box Optimization is to efficiently search through input regions with potentially widely-varying numerical properties, to achieve low-regret descent and fast progress toward the optima. Monte Carlo Tree Search (MCTS) methods have recently been introduced to improve Bayesian optimization by computing better partitioning of the search space that balances exploration and exploitation. Extending this promising framework, we study how to further integrate sample-based descent for faster optimization. We design novel ways of expanding Monte Carlo search trees, with new descent methods at vertices that incorporate stochastic search and Gaussian Processes. We propose the corresponding rules for balancing progress and uncertainty, branch selection, tree expansion, and backpropagation. The designed search process puts more emphasis on sampling for faster descent and uses localized Gaussian Processes as auxiliary metrics for both exploitation and exploration. We show empirically that the proposed algorithms can outperform state-of-the-art methods on many challenging benchmark problems.Comment: 17 pages, published in NeurIPS 202

    Faster Constraint Solving Using Learning Based Abstractions

    Get PDF
    This work addresses the problem of scalable constraint solving. Our technique combines traditional constraint-solving approaches with machine learning techniques to propose abstractions that simplify the problem. First, we use a collection of heuristics to learn sets of constraints that may be well abstracted as a single, simpler constraint. Next, we use an asymmetric machine learning procedure to abstract the set of clauses, using satisfying and falsifying instances as training data. Next, we solve a reduced constraint problem to check that the learned formula is indeed a consequent (or antecedent) of the formula we sought to abstract, and finally we use the learned formula to check the original property. Our experiments show that our technique allows improved handling of constraint solving instances that are slow to complete on a conventional solver. Our technique is complementary to existing constraint solving approaches, in the sense that it can be used to improve the scalability of any existing tool
    • …
    corecore